Show that the analog of the Fresnel-Kirchhoff integral (9.4.16) for wave
propagation in two dimensions, e.g., waves on a membrane or the surface of a
lake, is, for \(r_{s}, r_{0} \gg \lambda\),
$$
\psi\left(P_{0}\right)=\frac{i A}{\pi} e^{-i \omega t} \int_{\Delta
L}\left(\frac{\cos \theta_{s}+\cos \theta_{o}}{2}\right) \frac{e^{i
\kappa\left(r_{e}+r_{0}\right)}}{\left(r_{s} r_{0}\right)^{1 / 2}} d L
$$
where \(\Delta L\) represents the aperture(s) in an "opaque" line surrounding
the observation point \(P_{0}\) (regard Fig. \(9.4 .2\) as two-dimensional). Hint:
The isotropic outgoing cylindrical wave analogous to \((9.4 .6)\) and \((9.4
.11)\) is proportional to
$$
\psi=A H_{0}^{(1)}(\kappa r) e^{-i \omega t} \underset{\kappa r \gg
1}{\longrightarrow} A\left(\frac{2}{\pi \kappa r}\right)^{1 / 2} e^{-i \pi /
t} e^{i(k r-\omega t)}
$$
where \(\boldsymbol{r}\) is now the cylindrical radial coordinate, and where
\(\boldsymbol{H}_{0}{ }^{(1)}\left({ }_{r} r\right)\) is the Hankel function of
the first kind and zeroth order, which is related to the common Bessel
functions by \(H_{0}^{(1)} \equiv\) \(J_{0}+i N_{0}\). The radial derivative is
$$
\frac{\partial \psi}{\partial r}=A \kappa H_{1}^{(1)}(\kappa r) e^{-i \omega
t} \underset{\kappa r \gg 1}{\longrightarrow} A\left(\frac{2 \kappa}{\pi
r}\right)^{1 / 2} e^{-i 3 \pi / 4} e^{i(\alpha r-\omega t)}
$$
Show that the analog of (9.4.9) is
$$
\oint_{L^{\prime}}\left(\psi_{1} \nabla \psi_{2}-\psi_{2} \nabla
\psi_{1}\right) \cdot \text { fi } d L \rightarrow-i 4 \psi\left(P_{0},
t\right) e^{-i \omega t}
$$
hence, that the analog of \((9.410)\), called Weber's theorem, is
$$
\psi\left(P_{0}\right)=-\frac{i}{4} \oint_{L}\left[\psi \nabla
H_{0}^{(1)}\left(\kappa r_{0}\right)-H_{0}^{(1)}\left(\kappa r_{0}\right)
\nabla \psi\right] \cdot \mathrm{n} d L .
$$