The free-body diagram of car is shown below,

The friction force is required to continue the motion of the car, and the direction of friction is toward the center of rotation.
The net force on the car be written as,
\(\begin{aligned}mg\sin \theta + f &= {F_C}\\mg\sin \theta + f &= \frac{{m{v^2}}}{r}\\f &= \frac{{m{v^2}}}{r} - mg\sin \theta \end{aligned}\)
Here, f is the friction force.
Substitute the given values in above equation,
\(\begin{aligned}f = \frac{{\left( {1050\;{\rm{kg}}} \right){{\left( {85\;{\rm{km/h}} \times \frac{{\frac{5}{{18}}\;{\rm{m/s}}}}{{1\;{\rm{km/h}}}}} \right)}^2}}}{{72\;{\rm{m}}}} - \left( {1050\;{\rm{kg}}} \right)\left( {9.81\;{\rm{m/}}{{\rm{s}}^2}} \right)\sin 14^\circ \\f = 5638\;{\rm{N}}\end{aligned}\)
Thus, the magnitude of friction force is 5638 N.