\({\bf{8}}{\bf{.0^\circ }}\)
(b)
Summation of forces along y-axis is given as,
\(\begin{aligned}\sum {{F_y}} &= 0\\{F_N}\cos \theta - mg - {F_{fr}}\sin \theta &= 0\\{F_N} &= \frac{{mg + {F_{fr}}\sin \theta }}{{\cos \theta }}\end{aligned}\)
Here, \({F_N}\) is the normal force and \({F_{fr}}\) is the friction force.
Summation of forces along x-axis is given as,
\(\begin{aligned}\sum {{F_x}} &= m\left( {\frac{{{v^2}}}{r}} \right)\\{F_N}\sin \theta + {F_{fr}}\cos \theta &= m\left( {\frac{{{v^2}}}{r}} \right)\end{aligned}\)
Substitute value of \({F_N}\) in the above equation,
\(\begin{aligned}\left( {\frac{{mg + {F_{fr}}\sin \theta }}{{\cos \theta }}} \right)\sin \theta + {F_{fr}}\cos \theta &= m\left( {\frac{{{v^2}}}{r}} \right)\\{F_{fr}} &= m\left( {\frac{{{v^2}}}{r}\cos \theta - \sin \theta } \right)\end{aligned}\)
Substitute all the value in the above equation,
\(\begin{aligned}{F_{fr}} &= \left( {55\;{\rm{kg}}} \right)\left( {\frac{1}{{570\;{\rm{m}}}}{{\left( {160\;{\rm{km/h}} \times \left( {\frac{{1000\;{\rm{m}}}}{{\left( {60\,{\rm{s}} \times 60\;{\rm{s}}} \right)\,1\;{\rm{km/h}}}}} \right)} \right)}^2}\cos 8^\circ - \sin 8^\circ } \right)\\ &= \left( {55} \right)\left( {\frac{{{{\left( {44.44} \right)}^2}}}{{570}}\left( {0.99} \right) - \left( {9.8} \right)\left( {0.14} \right)} \right)\;{\rm{N}}\\ &= 113.7\;{\rm{N}}\\ &= {\rm{1}}{\rm{.1}} \times {\rm{1}}{{\rm{0}}^2}\;{\rm{N}}\end{aligned}\)
Thus, the friction force is \(1.1 \times {10^2}\;{\rm{N}}\).