The velocity of rotation can be calculated as,
\(v = \frac{{2\pi r}}{T}\)…… (i)
Here, r is the radius and T is the orbitalperiod.
The expression for the orbital speed is given as,
\(v = \sqrt {\frac{{G{M_{Moon}}}}{r}} \)…… (ii)
Here, G is the universal gravitational constant and its value is \(6.67 \times {10^{ - 11}}\;{\rm{N}} \cdot {{\rm{m}}^{\rm{2}}}{\rm{/k}}{{\rm{g}}^{\rm{2}}}\).
On combining equation (i) and equation (ii),
\(\begin{aligned}\sqrt {\frac{{G{M_{{\rm{Moon}}}}}}{r}} &= \frac{{2\pi r}}{T}\\T &= 2\pi \sqrt {\frac{{{r^3}}}{{G{M_{{\rm{Moon}}}}}}} \end{aligned}\)