A ball of mass 0.440 kg moving east (+x direction) with a speed of \({\bf{3}}{\bf{.80}}\;{{\bf{m}} \mathord{\left/{\vphantom {{\bf{m}} {\bf{s}}}} \right.\\} {\bf{s}}}\) collides head-on with a 0.220-kg ball at rest. If the collision is perfectly elastic, what will be the speed and direction of each ball after the collision?

Short Answer

Expert verified

The final velocities of the first and second balls are \(1.27\;{{\rm{m}} \mathord{\left/ {\vphantom {{\rm{m}} {\rm{s}}}} \right.\\} {\rm{s}}}\) and \(5.07\;{{\rm{m}} \mathord{\left/{\vphantom {{\rm{m}} {\rm{s}}}} \right.\\} {\rm{s}}}\), towards the east, respectively.

Step by step solution

01

Define elastic collision

In an elastic collision, the momentum and the total kinetic energy of the system remain conserved.

02

Given information

The mass of the first ball is\({m_1} = 0.440\;{\rm{kg}}\).

The initial velocity of the first ball is\({v_{1,{\rm{i}}}} = 3.80\;{{\rm{m}} \mathord{\left/{\vphantom {{\rm{m}} {\rm{s}}}} \right.\\} {\rm{s}}}\).

The mass of the second ball is\({m_2} = 0.220\;{\rm{kg}}\).

The initial velocity of the second ball is \({v_{2,{\rm{i}}}} = 0\).

03

Apply the law of conservation of linear momentum

Since the collision is perfectly elastic, the coefficient of restitution is\(e = 1\).

Consider the two balls as a system. Also, take the direction towards the east positive and the west negative.

Apply the law of conservation of momentum.

\(\begin{array}{c}{m_1}{v_{1,{\rm{i}}}}+{m_2}{v_{2,{\rm{i}}}} = {m_1}{v_{1,{\rm{f}}}} +{m_2}{v_{2,{\rm{f}}}}\\\left({0.440\;{\rm{kg}}}\right)\left({3.80\;{{\rm{m}}\mathord{\left/{\vphantom {{\rm{m}} {\rm{s}}}} \right.\\} {\rm{s}}}} \right) + \left( {0.220\;{\rm{kg}}}\right)\left( 0 \right) = \left( {0.440\;{\rm{kg}}} \right){v_{1,{\rm{f}}}} +\left({0.220\;{\rm{kg}}}\right){v_{2,{\rm{f}}}}\\\left({0.440\;{\rm{kg}}}\right){v_{1,{\rm{f}}}}+\left({0.220\;{\rm{kg}}}\right){v_{2,{\rm{f}}}}=1.672\;{{{\rm{kg}}\cdot {\rm{m}}} \mathord{\left/{\vphantom {{{\rm{kg}} \cdot {\rm{m}}} {\rm{s}}}} \right.\\} {\rm{s}}}\end{array}\) … (i)

04

Calculate the final velocity of the first and second balls

The condition for perfectly elastic collision is as follows:

\(\begin{array}{c}e=\frac{{{v_{2,{\rm{f}}}}{v_{1,f}}}}{{{v_{1,i}}{v_{2,{\rm{i}}}}}}\\1=\frac{{{v_{2,{\rm{f}}}}-{v_{1,f}}}}{{{v_{1,i}}- {v_{2,{\rm{i}}}}}}\\{v_{2,{\rm{f}}}} - {v_{1,f}} = {v_{1,i}} - {v_{2,{\rm{i}}}}\end{array}\)

Substitute the values in the above equation.

\(\begin{array}{c}{v_{2,{\rm{f}}}} - {v_{1,f}} = \left( {3.80\;{{\rm{m}} \mathord{\left/ {\vphantom{{\rm{m}}{\rm{s}}}}\right.\\}{\rm{s}}}}\right)0\\{v_{2,{\rm{f}}}}=\left({3.80\;{{\rm{m}}\mathord{\left/{\vphantom{{\rm{m}}{\rm{s}}}}\right.\\}{\rm{s}}}}\right)+{v_{1,f}}\end{array}\) ……… (ii)

Substitute the value of equation (ii) in equation (i).

\(\begin{array}{c}\left({0.440\;{\rm{kg}}}\right){v_{1,{\rm{f}}}}+\left({0.220\;{\rm{kg}}} \right)\left[ {\left( {3.80\;{{\rm{m}} \mathord{\left/{\vphantom {{\rm{m}} {\rm{s}}}} \right.\\} {\rm{s}}}} \right) + {v_{1,f}}} \right] = 1.672\;{{{\rm{kg}} \cdot {\rm{m}}} \mathord{\left/{\vphantom {{{\rm{kg}} \cdot {\rm{m}}} {\rm{s}}}} \right.\\} {\rm{s}}}\\\left( {0.440\;{\rm{kg}}} \right){v_{1,{\rm{f}}}} + \left( {0.220\;{\rm{kg}}} \right){v_{1,f}} = \left( {1.672\;{{{\rm{kg}} \cdot {\rm{m}}} \mathord{\left/{\vphantom {{{\rm{kg}} \cdot {\rm{m}}} {\rm{s}}}} \right.\\} {\rm{s}}}} \right) - \left( {0.836\;{{{\rm{kg}} \cdot {\rm{m}}} \mathord{\left/{\vphantom {{{\rm{kg}} \cdot {\rm{m}}}{\rm{s}}}}\right.\\}{\rm{s}}}}\right)\\{v_{1,{\rm{f}}}}=1.27\;{{\rm{m}}\mathord{\left/{\vphantom{{\rm{m}}{\rm{s}}}}\right.\\}{\rm{s}}}\end{array}\)

Substitute this value in equation (ii) to get the final velocity of the second ball.

\(\begin{array}{c}{v_{2,{\rm{f}}}} = \left( {3.80\;{{\rm{m}} \mathord{\left/{\vphantom {{\rm{m}} {\rm{s}}}} \right.\\}{\rm{s}}}}\right) + {v_{1,f}}\\{v_{2,{\rm{f}}}} = \left( {3.80\;{{\rm{m}} \mathord{\left/{\vphantom {{\rm{m}} {\rm{s}}}} \right.\\} {\rm{s}}}} \right) + \left( {1.27\;{{\rm{m}} \mathord{\left/{\vphantom {{\rm{m}} {\rm{s}}}} \right.\\} {\rm{s}}}} \right)\\{v_{2,{\rm{f}}}} = 5.07\;{{\rm{m}} \mathord{\left/{\vphantom {{\rm{m}} {\rm{s}}}} \right.\\}{\rm{s}}}\end{array}\)

Thus, the final velocity of the first ball is \(1.27\;{{\rm{m}} \mathord{\left/{\vphantom {{\rm{m}} {\rm{s}}}} \right.\\} {\rm{s}}}\) towards the east, and that of the second ball is \(5.07\;{{\rm{m}} \mathord{\left/{\vphantom {{\rm{m}} {\rm{s}}}} \right.\\} {\rm{s}}}\), also towards the east.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free