Question: (II) A 4.2-m-diameter merry-go-round is rotating freely with an angular velocity of \({\bf{0}}{\bf{.80}}\;{{{\bf{rad}}} \mathord{\left/{\vphantom {{{\bf{rad}}} {\bf{s}}}} \right.} {\bf{s}}}\). Its total moment of inertia is \({\bf{1360}}\;{\bf{kg}} \cdot {{\bf{m}}^{\bf{2}}}\). Four people standing on the ground, each of mass 65 kg, suddenly step onto the edge of the merry-go-round. (a) What is the angular velocity of the merry-go-round now? (b) What if the people were on it initially and then jumped off in a radial direction (relative to the merry-go-round)?

Short Answer

Expert verified

(a) The angular velocity of the merry-go-round will be \(0.43\;{{{\rm{rad}}} \mathord{\left/{\vphantom {{{\rm{rad}}} {\rm{s}}}} \right.} {\rm{s}}}\).

(b) The final angular velocity when people jump off it will be \(0.80\;{{{\rm{rad}}} \mathord{\left/{\vphantom {{{\rm{rad}}} {\rm{s}}}} \right.} {\rm{s}}}\).

Step by step solution

01

Variables on which angular momentum depends

The angular momentum of a rotating object may be obtained by examining the value of the angular velocity of the object and the object’s moment of inertia.

02

Given information

Given data:

The diameter of the merry-go-round is \(D = 4.2\;{\rm{m}}\).

The initial angular velocity of the system is \({\omega _{\rm{i}}} = 0.80\;{{{\rm{rad}}} \mathord{\left/{\vphantom {{{\rm{rad}}} {\rm{s}}}} \right.} {\rm{s}}}\).

The moment of inertia of the merry-go-round is \({I_{\rm{m}}} = 1360\;{\rm{kg}} \cdot {{\rm{m}}^{\rm{2}}}\).

The number of people is \(n = 4\).

The mass of each person is \(m = 65\;{\rm{kg}}\).

03

Calculate the final angular velocity of the system

(a)

Let\({I_{\rm{P}}}\)be the moment of inertia of each person.

The expression for the final moment of inertia of the system can be written as:

\(\begin{aligned}{c}{I_{\rm{f}}} &= {I_{\rm{m}}} + n{I_{\rm{P}}}\\{I_{\rm{f}}} &= {I_{\rm{m}}} + 4\left( {m{R^2}} \right)\\{I_{\rm{f}}} &= {I_{\rm{m}}} + 4m{\left( {\frac{D}{2}} \right)^2}\\{I_{\rm{f}}} &= {I_m} + m{D^2}\end{aligned}\)

Now, apply the conservation of angular momentum to find the final angular velocity of the system.

\(\begin{aligned}{c}{I_{\rm{f}}}{\omega _{\rm{f}}} &= {I_{\rm{m}}}{\omega _{\rm{i}}}\\{\omega _{\rm{f}}} &= \frac{{{I_{\rm{m}}}{\omega _{\rm{i}}}}}{{{I_{\rm{f}}}}}\\{\omega _{\rm{f}}} &= \frac{{{I_{\rm{m}}}{\omega _{\rm{i}}}}}{{{I_{\rm{m}}} + m{D^2}}}\end{aligned}\)

Substitute the values in the above expression.

\(\begin{aligned}{l}{\omega _{\rm{f}}} &= \frac{{\left( {1360\;{\rm{kg}} \cdot {{\rm{m}}^{\rm{2}}}} \right)\left( {0.80\;{{{\rm{rad}}} \mathord{\left/{\vphantom {{{\rm{rad}}} {\rm{s}}}} \right.} {\rm{s}}}} \right)}}{{\left( {1360\;{\rm{kg}} \cdot {{\rm{m}}^{\rm{2}}}} \right) + \left( {65\;{\rm{kg}}} \right){{\left( {4.2\;{\rm{m}}} \right)}^2}}}\\{\omega _{\rm{f}}} &= 0.43\;{{{\rm{rad}}} \mathord{\left/{\vphantom {{{\rm{rad}}} {\rm{s}}}} \right.} {\rm{s}}}\end{aligned}\)

Thus, the final angular velocity of the system is \(0.43\;{{{\rm{rad}}} \mathord{\left/{\vphantom {{{\rm{rad}}} {\rm{s}}}} \right.} {\rm{s}}}\).

04

Calculate the final angular velocity when people jump off

(b)

The torque exerted by the people jumping off the merry-go-round is zero. Therefore, there will be no variation in the angular momentum of the merry-go-round. Thus, the merry-go-round will continue to revolve with the initial angular momentum.

Thus, the final angular velocity when people jump off it will be \(0.80\;{{{\rm{rad}}} \mathord{\left/{\vphantom {{{\rm{rad}}} {\rm{s}}}} \right.} {\rm{s}}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free