The change in the length of the brass rod can be expressed as
\(\begin{aligned}{c}\Delta {l_{br}} &= {\alpha _{br}}{l_{br}}\Delta {T_{br}}\\\Delta {l_{br}} &= {\alpha _{br}}{l_{br}}\left( {{T_f} - {T_i}} \right)\\\left( {{T_f} - {T_i}} \right) &= \frac{{\Delta {l_{br}}}}{{{\alpha _{br}}{l_{br}}}}\\{T_f} &= {T_i} + \frac{{\Delta {l_{br}}}}{{{\alpha _{br}}{l_{br}}}}.\end{aligned}\)
Substitute the values in the above equation.
\(\begin{aligned}{c}{T_f} &= 25^\circ {\rm{C}} + \frac{{0.015}}{{19 \times {{10}^{ - 6}}\;{\rm{/^\circ C}}}}\\ &= 25^\circ {\rm{C}} + 789.47^\circ {\rm{C}}\\ &= 814.47^\circ {\rm{C}}\end{aligned}\)
Thus, the final temperature of the brass rod is \(814.47^\circ {\rm{C}}\).