Express the following angles in radians: (a) 45.0°, (b) 60.0°, (c) 90.0°, (d) 360.0°, and (e) 445°. Give as numerical values and as fractions of \(\pi \).

Short Answer

Expert verified

The radian values of the given angles are (a) \(\frac{\pi }{4}\;{\rm{rad}}\), (b) \(\frac{\pi }{3}\;{\rm{rad}}\), (c) \(\frac{\pi }{2}\;{\rm{rad}}\), (d) \(2\pi \;{\rm{rad}}\), and \(\frac{{89\pi }}{{36}}\;{\rm{rad}}\).

Step by step solution

01

Process to change the unit from degree to radian

To change the angle from degree to radian, you should multiply it by \(\frac{\pi }{{{{180}^ \circ }}}\).

02

Calculation

Part (a)

Now, expressing \({45.0^ \circ }\) in radians unit, you get:

\(\begin{aligned}{45.0^ \circ } &= {45.0^ \circ } \times \frac{\pi }{{{{180}^ \circ }}}\;{\rm{rad}}\\ &= \frac{\pi }{4}\;{\rm{rad}}\end{aligned}\)

Part (b)

Express \({60^ \circ }\) in radians unit.

\(\begin{aligned}{60^ \circ } &= {60^ \circ } \times \frac{\pi }{{{{180}^ \circ }}}\;{\rm{rad}}\\ &= \frac{\pi }{3}\;{\rm{rad}}\end{aligned}\)

Part (c)

Now, expressing \({90^ \circ }\) in radians unit, you get:

\(\begin{aligned}{90^ \circ } &= {90^ \circ } \times \frac{\pi }{{{{180}^ \circ }}}\;{\rm{rad}}\\ &= \frac{\pi }{2}\;{\rm{rad}}\end{aligned}\)

Part (d)

Express \({360^ \circ }\) in radians unit.

\(\begin{aligned}{360^ \circ } &= {360^ \circ } \times \frac{\pi }{{{{180}^ \circ }}}\;{\rm{rad}}\\ &= 2\pi \;{\rm{rad}}\end{aligned}\)

Part (e)

Now, expressing \({360^ \circ }\) in radians unit, you get:

\(\begin{aligned}{445^ \circ } &= {445^ \circ } \times \frac{\pi }{{{{180}^ \circ }}}\;{\rm{rad}}\\ &= \frac{{89\pi }}{{36}}\;{\rm{rad}}\end{aligned}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free