Chapter 5: Problem 5
Given the lattice energies and lattice parameters for the alkali halides with the \(\mathrm{NaCl}\) structure listed in the table below, calculate the Madelung energy, assuming each ion has formal charge (i.e. the charges given by the valence, so that the cation charge is 1 unit of positive electron charge, and the anion charge is \(-1\) unit of electron charge), and hence the Born-Mayer energy. $$ \begin{array}{ccccccc} & {c}{\mathrm{F}} & \mathrm{Cl} & \mathrm{Br} & \mathrm{I} & \\ \hline \mathrm{Li} & a: & 4.028 & 5.140 & 5.502 & 6.000 & \\ & E: & 1014.3 & 832.6 & 794.5 & 743.9 & \mathrm{~kJ} \mathrm{~mol}^{-1} \\ & B: & 67.1 & 29.8 & 23.8 & 17.1 & \mathrm{GPa} \\ \mathrm{Na} & a: & 4.634 & 5.640 & 5.978 & 6.474 & \\ & E: & 897.5 & 764.4 & 726.7 & 683.2 & \mathrm{~kJ} \mathrm{~mol}^{-1} \\ & B: & 46.5 & 24.0 & 19.9 & 15.1 & \mathrm{GPa} \\ \mathrm{K} & a: & 5.348 & 6.294 & 6.596 & 7.066 & \\ & E: & 794.5 & 694.0 & 663.5 & 627.5 & \mathrm{~kJ} \mathrm{~mol}^{-1} \\ & B: & 30.5 & 17.4 & 14.8 & 11.7 & \mathrm{GPa} \\ \mathrm{Rb} & a: & 5.630 & 6.582 & 6.890 & 7.342 & \\ & E: & 759.3 & 666.8 & 638.8 & 606.6 & \mathrm{~kJ} \mathrm{~mol}^{-1} \\ & B: & 26.2 & 15.6 & 13.0 & 10.6 & \mathrm{GPa} \\ \hline \end{array} $$ Given the condition for equilibrium, calculate the value of \(\rho\) for each case, and hence the coefficients \(B\) in the BornMayer interaction. For each crystal, calculate the value of the bulk modulus and compare with the experimental value. (Hint: a case for using a spreadsheet program.)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.