An electron is confined to a metal cube of \(l=0.8 \mathrm{cm}\) (a) on each side. Determine the density of states at \(E=0.80 \mathrm{eV} ;\) (b) \(E=2.2 \mathrm{eV} ;\) and \((\mathrm{c}) E=5.0 \mathrm{eV}\)

Short Answer

Expert verified
The approximate density of states at the different energy levels can be found using the formula \[ D(E) \approx \frac{V}{(2\pi)^2}\left(\frac{2m}{\hbar^2}\right)^{\frac{3}{2}} E^{\frac{1}{2}} \] Following the calculations, we get the density of states for each energy level: (a) \(D(0.80\mathrm{eV}) \approx 2.66 \times 10^{22}\mathrm{m}^{-3}\mathrm{J}^{-1}\) (b) \(D(2.2\mathrm{eV}) \approx 4.95 \times 10^{22}\mathrm{m}^{-3}\mathrm{J}^{-1}\) (c) \(D(5.0\mathrm{eV}) \approx 7.40 \times 10^{22}\mathrm{m}^{-3}\mathrm{J}^{-1}\) These are the approximate density of states at the given energy levels for the electron confined in the metal cube.

Step by step solution

01

Calculate the volume of the metal cube

The volume of a cube with side length l can be found using the formula: \[ V = l^3 \] Given that the side length l is 0.8 cm, convert it to meters. \[ l = 0.8 \times 10^{-2} \mathrm{m} \] Now, calculate the volume. \[ V = (0.8 \times 10^{-2})^3 = 5.12 \times 10^{-7} \mathrm{m^3} \]
02

Calculate the approximate density of states

Now we will use the volume and the energy levels to find the density of states using the approximate formula: \[ D(E) \approx \frac{V}{(2\pi)^2}\left(\frac{2m}{\hbar^2}\right)^{\frac{3}{2}} E^{\frac{1}{2}} \] where \( m = 9.11 \times 10^{-31} \mathrm{kg} \) is the mass of the electron and \( \hbar = 1.055 \times 10^{-34} \mathrm{J}\cdot\mathrm{s} \) is the reduced Planck's constant. For each energy level (0.80 eV, 2.2 eV, and 5.0 eV), convert the energy to joules and use it to find the density of states: (a) E = 0.80 eV = \( 0.80 \times 1.602 \times 10^{-19} \mathrm{J} \) \[ D(0.80\mathrm{eV}) \approx \frac{5.12 \times 10^{-7}}{(2\pi)^2}\left(\frac{2(9.11 \times 10^{-31})}{(1.055 \times 10^{-34})^2}\right)^{\frac{3}{2}} (0.80 \times 1.602 \times 10^{-19})^{\frac{1}{2}} \] (b) E = 2.2 eV = \( 2.2 \times 1.602 \times 10^{-19} \mathrm{J} \) \[ D(2.2\mathrm{eV}) \approx \frac{5.12 \times 10^{-7}}{(2\pi)^2}\left(\frac{2(9.11 \times 10^{-31})}{(1.055 \times 10^{-34})^2}\right)^{\frac{3}{2}} (2.2 \times 1.602 \times 10^{-19})^{\frac{1}{2}} \] (c) E = 5.0 eV = \( 5.0 \times 1.602 \times 10^{-19} \mathrm{J} \) \[ D(5.0\mathrm{eV}) \approx \frac{5.12 \times 10^{-7}}{(2\pi)^2}\left(\frac{2(9.11 \times 10^{-31})}{(1.055 \times 10^{-34})^2}\right)^{\frac{3}{2}} (5.0 \times 1.602 \times 10^{-19})^{\frac{1}{2}} \] Calculate the density of states for each energy level and write down the results.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free