The electric field just outside the surface of plastic sphere is given below:
\(E = \frac{{kQ}}{{{{\left( {\frac{D}{2}} \right)}^2}}}\)
Here,\(k\)is Coulomb’s constant and its value is\(9 \times {10^9}\;{\rm{N}} \cdot {{\rm{m}}^2}/{{\rm{C}}^2}\).
Substitute all the values in the above equation.
\(\begin{aligned}1390\;{\rm{N}}/{\rm{C}} = \frac{{\left( {9 \times {{10}^9}\;{\rm{N}} \cdot {{\rm{m}}^2}/{{\rm{C}}^2}} \right)Q}}{{{{\left( {\left( {\frac{{30\;{\rm{cm}}}}{2}} \right)\left( {\frac{{1\;{\rm{m}}}}{{100\;{\rm{cm}}}}} \right)} \right)}^2}}}\\Q = 3.5 \times {10^{ - 9}}\;{\rm{C}}\end{aligned}\)
The number of excess electron on outside surface of plastic sphere is given as:
\(Q = ne\)
Here,\(e\)is the charge of an electron and its value is\(1.6 \times {10^{ - 19}}\;{\rm{C}}\).
Substitute all the values in the above equation.
\(\begin{aligned}3.5 \times {10^{ - 9}}\;{\rm{C}} = n\left( {1.6 \times {{10}^{ - 19}}\;{\rm{C}}} \right)\\n = 2.2 \times {10^{10}}\end{aligned}\)
Therefore, the number of excess electron on outside surface of plastic sphere is \(2.2 \times {10^{10}}\).