Let \(x\) be the elongation of the spring.
We will find the relationship \(v\left( x \right)\), then find for which \(x\) this function attains maximum value and then insert this \(x\) to obtain the maximum speed of the box during this process.
If the elongation reduced from \( - \Delta l\;{\rm{to }}x\), the block traversed the distance of \(\Delta l - \left| x \right| = \Delta l + x\left( {x < 0} \right)\). Thus the work done by friction is \({W_{friction}} = - {\mu _k}mg\left( {\Delta l + x} \right)\).
Now, from equation (1),
\(\begin{aligned}{} \Rightarrow \frac{1}{2}k{\left( {\Delta l} \right)^2} - {\mu _k}mg\left( {\Delta l + x} \right) = \frac{1}{2}mv{\left( x \right)^2} + \frac{1}{2}k{x^2}\\ \Rightarrow v{\left( x \right)^2} = - \frac{k}{m}{x^2} - 2{\mu _k}g\left( {\Delta l + x} \right) + \frac{k}{m}{\left( {\Delta l} \right)^2}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( 2 \right)\end{aligned}\)
Since the quadratic function is strictly increasing where \(v \ge 0\), function \(v\left( x \right)\) and \(v{\left( x \right)^2}\) attain their maximum value at the same point.
Now, \(f\left( x \right) = v{\left( x \right)^2}\) is a quadratic function in \(x\) and attains precisely one maximum at \({x_0}\).
The necessary condition for \(f\) to have a maximum at \({x_0}\) is,
\(\begin{aligned}{}f'\left( {{x_0}} \right) & = 0\\ \Rightarrow - \frac{{2k}}{m}{x_0} - 2{\mu _k}g & = 0\end{aligned}\)
\(\begin{aligned}{} \Rightarrow {x_0} & = \frac{{{\mu _k}gm}}{k}\\ \Rightarrow {x_0}& = - \frac{{\left( {0.3} \right)\left( {1.6} \right)\left( {9.8} \right)}}{{45}}\,m\\ \Rightarrow {x_0} & = - 10.5\,m\end{aligned}\)
Insert this in equation (2)
\(\begin{aligned}{}{v_{\max }} &= v\left( {{x_0}} \right)\\ \Rightarrow {v_{\max }}& = \sqrt { - \frac{{{\mu _k}^2{g^2}m}}{k} - 2{\mu _k}g\left( {\Delta l - \frac{{{\mu _k}gm}}{k}} \right) + \frac{k}{m}{{\left( {\Delta l} \right)}^2}\;} \\ \Rightarrow {v_{\max }} & = \sqrt {\frac{{{\mu _k}^2{g^2}m}}{k} - 2{\mu _k}g\left( {\Delta l} \right) + \frac{k}{m}{{\left( {\Delta l} \right)}^2}} \\ \Rightarrow {v_{\max }} & = \sqrt {\frac{{{{\left( {0.3} \right)}^2}{{\left( {9.8} \right)}^2}\left( {1.6} \right)}}{{45}} - 2\left( {0.3} \right)\left( {9.8} \right)\left( {0.28} \right) + \frac{{45}}{{1.6}}{{\left( {0.28} \right)}^2}} {\rm{m/s}}\\ \Rightarrow {v_{\max }} & = 0.93\,{\rm{m/s}}\end{aligned}\)
Hencethe maximum speed of the box during its motion is\(0.93\,{\rm{m/s}}\).