Since angular acceleration is constant, we can use the equation,
\(\theta = {\theta _0} + {\omega _0}t + \frac{1}{2}\alpha {t^2}\)
We know in one revolution disk will cover\(2\pi \,\,rad\)
Suppose the time to complete the first revolution is\({t_1}\)
Then, substituting the values for the first revolution in the equation.
\(\begin{aligned}{c}2\pi \,rad = \left( 0 \right) + \left( 0 \right)\left( {{t_1}} \right) + \frac{1}{2}\alpha {\left( {{t_1}} \right)^2}\\2\pi \,\,rad = \frac{1}{2}\alpha {\left( {{t_1}} \right)^2}...\left( i \right)\end{aligned}\)
For second complete revolution \(\theta = 4\pi \,\,rad\) and time to will be
\(\begin{aligned}{}t = \,{t_1} + {t_2}\\ = {t_1} + 0.086\,\,s\end{aligned}\)
Substituting the values into the equation
\(\begin{aligned}{}4\pi \,\,rad = \left( 0 \right) + \left( 0 \right)\left( {{t_1} + 0.0865} \right) + \frac{1}{2}\alpha {\left( {{t_1} + 0.0865} \right)^2}\\4\pi \,\,rad = \frac{1}{2}\alpha {\left( {{t_1} + 0.0865} \right)^2}...\left( {ii} \right)\end{aligned}\)
Dividing equation (i) by (ii)
\(\begin{aligned}{c}\frac{{4\pi }}{{2\pi }} = \frac{{{1 \mathord{\left/{\vphantom {1 2}} \right.} 2}\alpha {{\left( {{t_1} + 0.0865\,s} \right)}^2}}}{{{1 \mathord{\left/{\vphantom {1 2}} \right.} 2}\alpha {{\left( {{t_1}} \right)}^2}}}\\t_1^2 = \frac{{{{\left( {{t_1} + 0.0865\,\,s} \right)}^2}}}{2}\\2t_1^2 = {t_1}^2 + 2\left( {0.0865\,} \right){t_1} + {\left( {0.0865} \right)^2}\\{t_1}^2 - 0.173t + 0.00748 = 0\end{aligned}\)\({t_1} = 0.209\,s,\,\, - 0.0358\,s\)
Since time cannot have negative value
Therefore, the time to cover first complete revolution is \(0.209\,\,s\)