From the conservation of energy, we know
Total initial energy = Total final energy
Initial potential energy +initial kinetic energy= final potential energy + final kinetic energy.
\({U_i} + K{E_i} = {U_f} + K{E_f}\)…(i)
As we know initial the block is at height h and it is at the rest
therefore
the initial potential energy\({U_1} = mgh\)
where m is mass and h is the height
initial kinetic energy\(K{E_i} = 0\)
Since the final height of the block is zero
Therefore,
Final potential energy\({U_f} = 0\)
The final kinetic energy will be the sum of translational kinetic energy and rotational kinetic energy
Final kinetic energy
\(\begin{aligned}{}K{E_f} = K{E_t} + K{E_r}\\ = \frac{1}{2}m{v^2} + \frac{1}{2}I{\omega ^2}\end{aligned}\)
Where I is the moment of inertia and\(\omega \)is angular velocity.
Substituting all the values into the equation (i)
\(mgh + 0 = 0 + \frac{1}{2}m{v^2} + \frac{1}{2}I{\omega ^2}\)
We know,
\(v = r\omega \)
\(mgh = \frac{1}{2}m{v^2} + \frac{1}{2}I{\left( {\frac{v}{r}} \right)^2}\)….(ii)
To find the velocity using the equation.
\(v = u + at\)…(iii)
\(h = ut + \frac{1}{2}a{t^2}\)…(iv)
Where u is initial velocity, v is final velocity, a is acceleration
And t is time.
We know
\(\begin{aligned}{}u = 0\\t = \,4\,\,{\rm{s}}\end{aligned}\)
\(h = \,12\,\,{\rm{m}}\)
Substituting the values into the equations (iii)
\(v = \left( {4\,{\rm{s}}} \right)a\)….(v)
Substituting the values into equation (iv)
\(\begin{aligned}{}12\,\,{\rm{m}} = 0\left( {4.00\,{\rm{s}}} \right) + \frac{1}{2}a{(4.00\,\,{\rm{s}})^2}\\a = \,1.5\,{{\rm{m}} \mathord{\left/{\vphantom {{\rm{m}} {{{\rm{s}}^{\rm{2}}}}}} \right.} {{{\rm{s}}^{\rm{2}}}}}\end{aligned}\)
Therefore, from equation (v)
\(\begin{aligned}{}v = \left( {4\,{\rm{s}}} \right)\left( {1.5\,{{\rm{m}} \mathord{\left/{\vphantom {{\rm{m}} {{{\rm{s}}^{\rm{2}}}}}} \right.} {{{\rm{s}}^{\rm{2}}}}}} \right)\\v = 6\,{{\rm{m}} \mathord{\left/{\vphantom {{\rm{m}} {\rm{s}}}} \right.}{\rm{s}}}\end{aligned}\)
Now, from equation (i)
\(mgh = \frac{1}{2}m{v^2} + \frac{1}{2}I{\left( {\frac{v}{r}} \right)^2}\)
Substituting the values
\(\begin{aligned}{}\left( {\,8.20\,\,{\rm{kg}}} \right)\left( {9.8\,\,{{\rm{m}} \mathord{\left/{\vphantom {{\rm{m}} {{{\rm{s}}^{\rm{2}}}}}} \right.} {{{\rm{s}}^{\rm{2}}}}}} \right)\,\left( {12.\,0\,\,{\rm{m}}} \right) = \frac{1}{2}\left( {\,8.20\,\,{\rm{kg}}} \right){\left( {6\,\,{{\rm{m}} \mathord{\left/{\vphantom {{\rm{m}} {\rm{s}}}} \right.} {\rm{s}}}} \right)^2} + \frac{1}{2}I{\left( {\frac{{6\,\,{{\rm{m}}\mathord{\left/{\vphantom {{\rm{m}} {\rm{s}}}} \right.} {\rm{s}}}}}{{\,{{0.640\,\,{\rm{m}}} \mathord{\left/{\vphantom {{0.640\,\,{\rm{m}}} 2}} \right.} 2}}}} \right)^2}\\\frac{1}{2}I{\left( {\frac{{6\,\,{{\rm{m}} \mathord{\left/{\vphantom {{\rm{m}} {\rm{s}}}} \right.} {\rm{s}}}}}{{\,{{0.640\,\,{\rm{m}}} \mathord{\left/{\vphantom {{0.640\,\,{\rm{m}}} 2}} \right.} 2}}}} \right)^2} = \left( {\,8.20\,\,{\rm{kg}}} \right)\left( {9.8\,\,{{\rm{m}} \mathord{\left/{\vphantom {{\rm{m}} {{{\rm{s}}^{\rm{2}}}}}} \right.} {{{\rm{s}}^{\rm{2}}}}}} \right)\,\left( {12.\,0\,\,{\rm{m}}} \right) - \frac{1}{2}\left( {\,8.20\,\,{\rm{kg}}} \right){\left( {6\,\,{{\rm{m}} \mathord{\left/{\vphantom {{\rm{m}} {\rm{s}}}} \right.} {\rm{s}}}} \right)^2}\\I = \frac{{2\left( {\,8.20\,\,{\rm{kg}}} \right)\left( {9.8\,\,{{\rm{m}}\mathord{\left/{\vphantom {{\rm{m}} {{{\rm{s}}^{\rm{2}}}}}} \right.} {{{\rm{s}}^{\rm{2}}}}}} \right)\,\left( {12.\,0\,\,{\rm{m}}} \right) - \left( {\,8.20\,\,{\rm{kg}}} \right){{\left( {6\,\,{{\rm{m}} \mathord{\left/{\vphantom {{\rm{m}} {\rm{s}}}} \right.} {\rm{s}}}} \right)}^2}}}{{{{\left( {\frac{{6\,\,{{\rm{m}} \mathord{\left/{\vphantom {{\rm{m}} {\rm{s}}}} \right.} {\rm{s}}}}}{{\,{{0.640\,\,{\rm{m}}} \mathord{\left/{\vphantom {{0.640\,\,{\rm{m}}} 2}} \right.} 2}}}} \right)}^2}}}\\I = \frac{{167.33\,\,}}{{36}}{\rm{kg - }}{{\rm{m}}^{\rm{2}}}\\{\rm{So}}\\I = 4.65\,\,{\rm{kg - }}{{\rm{m}}^{\rm{2}}}\end{aligned}\)
Hence the moment of inertia of the wheel is \(I = 4.65\,\,{\rm{kg - }}{{\rm{m}}^{\rm{2}}}\)