Chapter 1: Q9-58P (page 298)
58. A roller in a printing press turns through an angle \({\bf{\theta }}\left( {\bf{t}} \right)\) given by \(\theta \left( t \right) = \gamma {t^2} - \beta {t^3}\), where \(\gamma = {\bf{3}}{\bf{.2}}{\rm{0 }}{{{\rm{rad}}} \mathord{\left/{\vphantom {{{\rm{rad}}} {{{\rm{s}}^{\rm{2}}}}}} \right.} {{{\rm{s}}^{\rm{2}}}}}\), and \(\beta = 0.500{\rm{ }}{{{\rm{rad}}} \mathord{\left/{\vphantom {{{\rm{rad}}} {{{\rm{s}}^{\rm{3}}}}}} \right.} {{{\rm{s}}^{\rm{3}}}}}\).
(a) Calculate the angular velocity of the roller as a function of time.
(b) Calculate the angular acceleration of the roller as a function of time.
(c) what is the maximum positive angular velocity, and at what value of t does it occur?
Short Answer
- The angular velocity of the roller as a function of time is \(\omega \left( t \right) = \left( {6.{\rm{40 }}{{{\rm{rad}}} \mathord{\left/) {\vphantom {{{\rm{rad}}} {{{\rm{s}}^{\rm{2}}}}}} \right. } {{{\rm{s}}^{\rm{2}}}}}} \right)t - \left( {1.5{\rm{0 }}{{{\rm{rad}}} \mathord{\left/ {\vphantom {{{\rm{rad}}} {{{\rm{s}}^{\rm{3}}}}}} \right. } {{{\rm{s}}^{\rm{3}}}}}} \right){t^2}\).
- The angular acceleration of the roller as a function of time is \(\alpha \left( t \right) = 6.{\rm{40 }}{{{\rm{rad}}} \mathord{\left/ {\vphantom {{{\rm{rad}}} {{{\rm{s}}^{\rm{2}}}}}} \right.} {{{\rm{s}}^{\rm{2}}}}} - \left( {3.{\rm{00 }}{{{\rm{rad}}} \mathord{\left/ {\vphantom {{{\rm{rad}}} {{{\rm{s}}^{\rm{3}}}}}} \right.} {{{\rm{s}}^{\rm{3}}}}}} \right)t\).
- The maximum angular velocity is \({\omega _{\max }} = 6.{\rm{83 }}{{{\rm{rad}}} \mathord{\left/ {\vphantom {{{\rm{rad}}} {\rm{s}}}} \right. } {\rm{s}}}\) at \(t = 2.{\rm{13 s}}\).