First, divide the flywheel disk into circular rings of width dr
So, the mass of the circular ring of radius r and thickness t can be given as,
\(\begin{aligned}{\rm{mass = density}}\,{\rm{ \times }}\,{\rm{volume}}\\dm = \rho \left( {2\pi rtdr} \right)\end{aligned}\)
Therefore, the kinetic energy of a circular ring can be given as,
\(\begin{aligned}K = \frac{1}{2}m{v^2}\\dK = \frac{1}{2}dm{\left( {r\omega } \right)^2}\end{aligned}\)
\(dK = \frac{1}{2}\left( {\rho \left( {2\pi rtdr} \right)} \right){\left( {r\omega } \right)^2}\)
The total kinetic energy of the flywheel disc is the sum of the energy of each circular ring.
\(K = \int\limits_0^r {\frac{1}{2}\left( {\rho \left( {2\pi rtdr} \right)} \right){{\left( {r\omega } \right)}^2}} \)
Substituting the values
\(\begin{aligned}K = \int\limits_0^r {\frac{1}{2}\left( {\rho \left( {2\pi rtdr} \right)} \right){{\left( {r\omega } \right)}^2}} \\10 \times {10^6}\,{\rm{J}} = \int\limits_0^r {\frac{1}{2}\left( {\,\,7800\,\,{{{\rm{kg}}} \mathord{\left/ {\vphantom {{{\rm{kg}}} {{{\rm{m}}^{\rm{3}}}}}} \right.} {{{\rm{m}}^{\rm{3}}}}}} \right)\left( {2\pi r\left( {10.0 \times {{10}^{ - 2}}\,\,{\rm{m}}} \right)dr} \right){{\left( {90\,\,\left( {\frac{{2\pi }}{{60}}} \right)\,{{\,{\rm{rad}}} \mathord{\left/ {\vphantom {{\,{\rm{rad}}} {\rm{m}}}} \right.} {\rm{m}}}\,\,r\,} \right)}^2}} \\10 \times {10^6}\,{\rm{J}} = \frac{{4{\pi ^3}\left( {7800} \right)\left( {0.1} \right){{\left( {90} \right)}^2}}}{{{{\left( {60} \right)}^2}}}\int\limits_0^r {{r^3}} dr\\10 \times {10^6}\,{\rm{J}} = \frac{{4{\pi ^3}\left( {7800} \right)\left( {0.1} \right){{\left( {90} \right)}^2}}}{{{{\left( {60} \right)}^2}}}\left( {\frac{{{r^4}}}{4}} \right)\\r = 3.65\,\,{\rm{m}}\end{aligned}\)
The radius of the flywheel dick is \(3.65\,\,{\rm{m}}\)
Therefore
The diameter of the flywheel disk is
\(\begin{aligned}{c}d = 2r\\ = 2 \times 3.65\,\,{\rm{m}}\\{\rm{ = 7}}{\rm{.36}}\,\,{\rm{m}}\end{aligned}\)
Hence the diameter of the flywheel disk is \({\rm{7}}{\rm{.36}}\,\,{\rm{m}}\)