You are asked to design a cylindrical steel rod \({\bf{50}}{\bf{.0}}\;{\bf{cm}}\) long, with a circular cross-section that will conduct \({\bf{190}}{\bf{.0}}\;{{\bf{J}} \mathord{\left/{\vphantom {{\bf{J}} {\bf{s}}}} \right.\\} {\bf{s}}}\) from the furnace at \({\bf{400}}\;{\bf{^\circ C}}\) to a container of boiling water under \({\bf{1}}\) atmosphere. What must the rod’s diameter be?

Short Answer

Expert verified

The diameter of the rod, with uniform cross-section is 9 cm.

Step by step solution

01

Given Data

The cross-sectional area of the rod is\({\rm{A}} = \pi {r^2}\).

The difference in temperature between the two ends:

\(\begin{array}{c}\Delta T = \left( {400 - 100} \right)\;{\rm{^\circ C}}\\ = {\rm{300}}\;{\rm{^\circ C}}\end{array}\).

The length of the steel rod:\(L = 50\;{\rm{cm}}\).

The thermal conductivity of the steel is:\({\kappa _S} = 50.2\;{{\rm{W}} \mathord{\left/{\vphantom {{\rm{W}} {{\rm{m}} \cdot {\rm{K}}}}} \right.\\} {{\rm{m}} \cdot {\rm{K}}}}\).

The rate of heat transfer: \(190.0\;\;{{\rm{J}} \mathord{\left/{\vphantom {{\rm{J}} {\rm{s}}}} \right.\\} {\rm{s}}}\).

02

Concept

The spontaneous transfer of heat, from a body which is at higher temperature to a body at \({\bf{a}}\) relatively lower temperature, when they are in contact is called thermal conduction. The transfer of heat will continue until the temperature of both bodies becomes equal. The thermal conductivity of an object is given as

\(\kappa {\bf{ = }}\frac{{\bf{L}}}{{{\bf{A\Delta T}}}}\frac{{{\bf{dQ}}}}{{{\bf{dt}}}}\;\; \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \left( 1 \right)\)

03

Calculation

Using equation (1), the thermal conductivity of the bottom of the pot can be calculated as-

\(\kappa = \frac{L}{{A\Delta T}}\frac{{dQ}}{{dt}}\)

For the given values of the quantities, the equation becomes-

\(\begin{array}{l}50.2\;{{\rm{W}} \mathord{\left/{\vphantom {{\rm{W}} {{\rm{m}} \cdot {\rm{K}}}}} \right.\\} {{\rm{m}} \cdot {\rm{K}}}} = \frac{{\left( {0.5\;{\rm{m}}} \right)}}{{\left( {\pi {r^2}} \right)\left( {300\;^\circ {\rm{C}}} \right)}} \times 190\;{{\rm{J}} \mathord{\left/{\vphantom {{\rm{J}} {\rm{s}}}} \right.\\} {\rm{s}}}\\{r^2} = 2 \times {10^{ - 3}}\;{{\rm{m}}^{\rm{2}}}\\r = 4.5\;{\rm{cm}}\\{\rm{d}} = {\rm{9}}\;{\rm{cm}}\end{array}\)

The diameter of the rod is \(9\;{\rm{cm}}\).

04

Conclusion

The diameter of the cross-section of the rod is \(9\;{\rm{cm}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free