Using equation (1), the rate of heat radiation through a black body is given as-
\(\frac{{dQ}}{{dt}} = A\sigma e{T^4}\)
For the given values the above equation becomes-
\(\begin{array}{c}\frac{{dQ}}{{dt}} = 1\;{{\rm{m}}^2} \times 5.67 \times {10^{ - 8}}\;{{\rm{W}} \mathord{\left/{\vphantom {{\rm{W}} {{{\rm{m}}^{\rm{2}}}{{\rm{K}}^{\rm{4}}}}}} \right.\\} {{{\rm{m}}^{\rm{2}}}{{\rm{K}}^{\rm{4}}}}} \times 1 \times {\left( {273\;{\rm{K}}} \right)^4}\\ = 314.9\;{\rm{W}}\end{array}\)
The rate of transfer of heat from the black body at \(273\;{\rm{K}}\) is \(314.9\;{\rm{W}}\).