A spherical pot contains \({\bf{0}}{\bf{.75}}\;{\bf{L}}\) of hot coffee (essentially water) at an initial temperature of \({\bf{95}}\;{\bf{^\circ C}}\). The pot has an emissivity of \({\bf{0}}{\bf{.60}}\), and the surroundings are at \({\bf{20}}{\bf{.0}}\;{\bf{^\circ C}}\). Calculate the coffee’s rate of heat loss by radiation.

Short Answer

Expert verified

The rate at which coffee radiates heat is 1.47 kW.

Step by step solution

01

Given Data

The temperature of the coffee is\(T = 95\;^\circ {\rm{C}} = 368\;{\rm{K}}\).

The temperature of the surroundings are\(T = 20\;^\circ {\rm{C}} = 293\;{\rm{K}}\)

The emissivity of the pot is \(0.60\).

Volume of coffee is \(V = 0.75\;{\rm{L}}\).

Stefan-Boltzmann constant: \(\sigma = 5.67 \times {10^{ - 8}}\;{{\rm{W}} \mathord{\left/{\vphantom {{\rm{W}} {{{\rm{m}}^{\rm{2}}}{{\rm{K}}^{\rm{4}}}}}} \right.\\} {{{\rm{m}}^{\rm{2}}}{{\rm{K}}^{\rm{4}}}}}\)

02

Concept

Stefan-Boltzmann Law states that the rate at which heat is radiated through a black body is directly proportional to the fourth power of the absolute temperature of the black body. The rate of heat radiation through a perfect black body, on heating, is given as-

\(\frac{{{\bf{dQ}}}}{{{\bf{dt}}}}{\bf{ = A\sigma e}}{{\bf{T}}^{\bf{4}}}\;\; \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \left( 1 \right)\)

Any other body except the black body simultaneously emits the energy and absorbs it from the surrounding. For such a body, the rate of heat transfer is given as-

\(\frac{{{\bf{dQ}}}}{{{\bf{dt}}}}{\bf{ = A\sigma e}}\left( {{{\bf{T}}^4}{\bf{ - T}}_o^4} \right)\;\; \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \left( 2 \right)\)

Here,\({{\bf{T}}_{\bf{o}}}\)is the absolute temperature of the surrounding.

03

Calculations

The volume of the spherical pot is given as-

\(V = \frac{4}{3}\pi {r^3}\)

Here, \(r\) is the radius of the sphere.

For \(V = 0.75\;{\rm{L}}\), the radius of sphere is-

\(\begin{array}{c}r = \sqrt[3]{{0.75\;{\rm{L}} \times \frac{{\rm{3}}}{{4\pi }}}}\\ = 0.56\;{\rm{m}}\end{array}\)

The surface area of the spherical pot is given as-

\(A = 4\pi {r^2}\)

For \(r = 0.56\;{\rm{m}}\), the surface area of the sphere will be-

\(\begin{array}{c}A = 4\pi {\left( {0.56\;{\rm{m}}} \right)^2}\\ = 3.94\;{{\rm{m}}^2}\end{array}\)

From equation (2), the heat radiated per second through the spherical pot is given as-

\(\frac{{dQ}}{{dt}} = A\sigma e\left( {{T^4} - T_o^4} \right)\)

For the given values the above equation becomes-

\(\begin{array}{c}\frac{{dQ}}{{dt}} = 3.94\;{{\rm{m}}^2} \times 5.67 \times {10^{ - 8}}\;{{\rm{W}} \mathord{\left/{\vphantom {{\rm{W}} {{{\rm{m}}^{\rm{2}}}{{\rm{K}}^{\rm{4}}}}}} \right.\\} {{{\rm{m}}^{\rm{2}}}{{\rm{K}}^{\rm{4}}}}} \times 0.60 \times \left\{ {{{\left( {368\;{\rm{K}}} \right)}^4} - {{\left( {293\;{\rm{K}}} \right)}^4}} \right\}\\ = \left( {1.47 \times {{10}^3}} \right)\;{\rm{W}}\\ = {\rm{1}}{\rm{.47}}\;{\rm{kW}}\end{array}\)

The rate at which heat is lost from the spherical pot is \(1.47\;{\rm{kW}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free