The volume of the spherical pot is given as-
\(V = \frac{4}{3}\pi {r^3}\)
Here, \(r\) is the radius of the sphere.
For \(V = 0.75\;{\rm{L}}\), the radius of sphere is-
\(\begin{array}{c}r = \sqrt[3]{{0.75\;{\rm{L}} \times \frac{{\rm{3}}}{{4\pi }}}}\\ = 0.56\;{\rm{m}}\end{array}\)
The surface area of the spherical pot is given as-
\(A = 4\pi {r^2}\)
For \(r = 0.56\;{\rm{m}}\), the surface area of the sphere will be-
\(\begin{array}{c}A = 4\pi {\left( {0.56\;{\rm{m}}} \right)^2}\\ = 3.94\;{{\rm{m}}^2}\end{array}\)
From equation (2), the heat radiated per second through the spherical pot is given as-
\(\frac{{dQ}}{{dt}} = A\sigma e\left( {{T^4} - T_o^4} \right)\)
For the given values the above equation becomes-
\(\begin{array}{c}\frac{{dQ}}{{dt}} = 3.94\;{{\rm{m}}^2} \times 5.67 \times {10^{ - 8}}\;{{\rm{W}} \mathord{\left/{\vphantom {{\rm{W}} {{{\rm{m}}^{\rm{2}}}{{\rm{K}}^{\rm{4}}}}}} \right.\\} {{{\rm{m}}^{\rm{2}}}{{\rm{K}}^{\rm{4}}}}} \times 0.60 \times \left\{ {{{\left( {368\;{\rm{K}}} \right)}^4} - {{\left( {293\;{\rm{K}}} \right)}^4}} \right\}\\ = \left( {1.47 \times {{10}^3}} \right)\;{\rm{W}}\\ = {\rm{1}}{\rm{.47}}\;{\rm{kW}}\end{array}\)
The rate at which heat is lost from the spherical pot is \(1.47\;{\rm{kW}}\).