A transverse wave on a string has amplitude 0.300 cm, wavelength 12.0 cm, and speed 6.00 cm/s. It is represented by y(x,t) as given in Exercise 15.12.

(a) At time t = 0, compute y at 1.5-cm intervals of x(that is, at x = 0, x = 1.5 cm, x = 3.0 cm, and so on) from x= 0 to x = 12.0 cm. Graph the results. This is the shape of the string at time t = 0.

(b) Repeat the calculations for the same values of x at times t = 0.400 s andt = 0.800 s. Graph the shape of the string at these instants. In what direction is the wave traveling?

Short Answer

Expert verified

(a)(i)

x (cm)

y (cm)

0

0.3

1.5

0.212

3

0

4.5

-0.212

6

-.0.3

7.5

-0.212

9

0

10.5

0.212

12

0.3

(ii)The graph is drawn below

Step by step solution

01

Given Data

\(\begin{array}{l}{\rm{Amplitude}},\;A=0.3\;{\rm{cm}}\\{\rm{wavelength}},\,\;\lambda=12\;{\rm{cm}}\\{\rm{speed}},\;v= 6\;{\rm{cm/s}}\end{array}\)

02

Concept

The motion of a transverse wave is occurred, when all the points in the wave oscillate in the direction of right angle to the path of wave,

03

Step 3(a)(i): compute y

\(\begin{array}{c}x = 0\\y\left( {x,t} \right) = A\cos \;\left( {\left( {{{2\pi } \mathord{\left/{\vphantom {{2\pi } \lambda }} \right.\\} \lambda }} \right)\left( {x - vt} \right)} \right)\\y = 0.3 \times \cos \;\left( {{{2\pi } \mathord{\left/{\vphantom {{2\pi } {12 \times \left( 0 \right)}}} \right.\\} {12 \times \left( 0 \right)}}} \right)\\ = 0.3\;{\rm{cm}}\end{array}\)\(\begin{array}{c}x = 1.5\\y\left( {x,t} \right) = A\cos \;\left( {\left( {{{2\pi } \mathord{\left/{\vphantom {{2\pi } \lambda }} \right.\\} \lambda }} \right)\left( {x - vt} \right)} \right)\\y = 0.3 \times \cos \;\left( {{{2\pi } \mathord{\left/{\vphantom {{2\pi } {12 \times \left( {1.5} \right)}}} \right.\\} {12 \times \left( {1.5} \right)}}} \right)\\ = 0.212\;{\rm{cm}}\end{array}\)\(\begin{array}{c}x = 3\\y\left( {x,t} \right) = A\cos \;\left( {\left( {{{2\pi } \mathord{\left/{\vphantom {{2\pi } \lambda }} \right.\\} \lambda }} \right)\left( {x - vt} \right)} \right)\\y = 0.3 \times \cos \;\left( {{{2\pi } \mathord{\left/{\vphantom {{2\pi } {12 \times \left( 3 \right)}}} \right.\\} {12 \times \left( 3 \right)}}} \right)\\ = 0\;{\rm{cm}}\end{array}\)\(\begin{array}{c}x = 4.5\;{\rm{cm}}\\x = 1.5\;{\rm{cm}}\\y\left( {x,t} \right) = A\cos \;\left( {\left( {{{2\pi } \mathord{\left/{\vphantom {{2\pi } \lambda }} \right.\\} \lambda }} \right)\left( {x - vt} \right)} \right)\\y = 0.3 \times \cos \;\left( {{{2\pi } \mathord{\left/{\vphantom {{2\pi } {12 \times \left( {4.5} \right)}}} \right.\\} {12 \times \left( {4.5} \right)}}} \right)\\ = 0.212\;{\rm{cm}}\end{array}\)\(\begin{array}{c}x = 6\;{\rm{cm}}\\x = 1.5\;{\rm{cm}}\\y\left( {x,t} \right) = A\cos \;\left( {\left( {{{2\pi } \mathord{\left/{\vphantom {{2\pi } \lambda }} \right.\\} \lambda }} \right)\left( {x - vt} \right)} \right)\\y = 0.3 \times \cos \;\left( {{{2\pi } \mathord{\left/{\vphantom {{2\pi } {12 \times \left( 6 \right)}}} \right.\\} {12 \times \left( 6 \right)}}} \right)\\ = - 0.3\;{\rm{cm}}\end{array}\)\(\begin{array}{c}x = 7.5\;{\rm{cm}}\\x = 1.5\;{\rm{cm}}\\y\left( {x,t} \right) = A\cos \;\left( {\left( {{{2\pi } \mathord{\left/{\vphantom {{2\pi } \lambda }} \right.\\} \lambda }} \right)\left( {x - vt} \right)} \right)\\y = 0.3 \times \cos \;\left( {{{2\pi } \mathord{\left/{\vphantom {{2\pi } {12 \times \left( {7.5} \right)}}} \right.\\} {12 \times \left( {7.5} \right)}}} \right)\\ = - 0.212\;{\rm{cm}}\end{array}\)\(\begin{array}{c}x = 9\;{\rm{cm}}\\x = 1.5\;{\rm{cm}}\\y\left( {x,t} \right) = A\cos \;\left( {\left( {{{2\pi } \mathord{\left/{\vphantom {{2\pi } \lambda }} \right.\\} \lambda }} \right)\left( {x - vt} \right)} \right)\\y = 0.3 \times \cos \;\left( {{{2\pi } \mathord{\left/{\vphantom {{2\pi } {12 \times \left( 9 \right)}}} \right.\\} {12 \times \left( 9 \right)}}} \right)\\ = 0\;{\rm{cm}}\end{array}\)\(\begin{array}{c}x = 10.5\;{\rm{cm}}\\x = 1.5\;{\rm{cm}}\\y\left( {x,t} \right) = A\cos \;\left( {\left( {{{2\pi } \mathord{\left/{\vphantom {{2\pi } \lambda }} \right.\\} \lambda }} \right)\left( {x - vt} \right)} \right)\\y = 0.3 \times \cos \;\left( {{{2\pi } \mathord{\left/{\vphantom {{2\pi } {12 \times \left( {10.5} \right)}}} \right.\\} {12 \times \left( {10.5} \right)}}} \right)\\ = 0.212\;{\rm{cm}}\end{array}\)\(\begin{array}{c}x = 12\;{\rm{cm}}\\x = 1.5\;{\rm{cm}}\\y\left( {x,t} \right) = A\cos \;\left( {\left( {{{2\pi } \mathord{\left/{\vphantom {{2\pi } \lambda }} \right.\\} \lambda }} \right)\left( {x - vt} \right)} \right)\\y = 0.3 \times \cos \;\left( {{{2\pi } \mathord{\left/{\vphantom {{2\pi } {12 \times \left( {12} \right)}}} \right.\\} {12 \times \left( {12} \right)}}} \right)\\ = 0.3\;{\rm{cm}}\end{array}\)

Hence the values are

x (cm)

y (cm)

0

0.3

1.5

0.212

3

0

4.5

-0.212

6

-.0.3

7.5

-0.212

9

0

10.5

0.212

12

0.3

04

Step 3(a)(ii): Graph the results

Hence the graph is drawn.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free