\(\begin{array}{c}x = 0\\y\left( {x,t} \right) = A\cos \;\left( {\left( {{{2\pi } \mathord{\left/{\vphantom {{2\pi } \lambda }} \right.\\} \lambda }} \right)\left( {x - vt} \right)} \right)\\y = 0.3 \times \cos \;\left( {{{2\pi } \mathord{\left/{\vphantom {{2\pi } {12 \times \left( 0 \right)}}} \right.\\} {12 \times \left( 0 \right)}}} \right)\\ = 0.3\;{\rm{cm}}\end{array}\)\(\begin{array}{c}x = 1.5\\y\left( {x,t} \right) = A\cos \;\left( {\left( {{{2\pi } \mathord{\left/{\vphantom {{2\pi } \lambda }} \right.\\} \lambda }} \right)\left( {x - vt} \right)} \right)\\y = 0.3 \times \cos \;\left( {{{2\pi } \mathord{\left/{\vphantom {{2\pi } {12 \times \left( {1.5} \right)}}} \right.\\} {12 \times \left( {1.5} \right)}}} \right)\\ = 0.212\;{\rm{cm}}\end{array}\)\(\begin{array}{c}x = 3\\y\left( {x,t} \right) = A\cos \;\left( {\left( {{{2\pi } \mathord{\left/{\vphantom {{2\pi } \lambda }} \right.\\} \lambda }} \right)\left( {x - vt} \right)} \right)\\y = 0.3 \times \cos \;\left( {{{2\pi } \mathord{\left/{\vphantom {{2\pi } {12 \times \left( 3 \right)}}} \right.\\} {12 \times \left( 3 \right)}}} \right)\\ = 0\;{\rm{cm}}\end{array}\)\(\begin{array}{c}x = 4.5\;{\rm{cm}}\\x = 1.5\;{\rm{cm}}\\y\left( {x,t} \right) = A\cos \;\left( {\left( {{{2\pi } \mathord{\left/{\vphantom {{2\pi } \lambda }} \right.\\} \lambda }} \right)\left( {x - vt} \right)} \right)\\y = 0.3 \times \cos \;\left( {{{2\pi } \mathord{\left/{\vphantom {{2\pi } {12 \times \left( {4.5} \right)}}} \right.\\} {12 \times \left( {4.5} \right)}}} \right)\\ = 0.212\;{\rm{cm}}\end{array}\)\(\begin{array}{c}x = 6\;{\rm{cm}}\\x = 1.5\;{\rm{cm}}\\y\left( {x,t} \right) = A\cos \;\left( {\left( {{{2\pi } \mathord{\left/{\vphantom {{2\pi } \lambda }} \right.\\} \lambda }} \right)\left( {x - vt} \right)} \right)\\y = 0.3 \times \cos \;\left( {{{2\pi } \mathord{\left/{\vphantom {{2\pi } {12 \times \left( 6 \right)}}} \right.\\} {12 \times \left( 6 \right)}}} \right)\\ = - 0.3\;{\rm{cm}}\end{array}\)\(\begin{array}{c}x = 7.5\;{\rm{cm}}\\x = 1.5\;{\rm{cm}}\\y\left( {x,t} \right) = A\cos \;\left( {\left( {{{2\pi } \mathord{\left/{\vphantom {{2\pi } \lambda }} \right.\\} \lambda }} \right)\left( {x - vt} \right)} \right)\\y = 0.3 \times \cos \;\left( {{{2\pi } \mathord{\left/{\vphantom {{2\pi } {12 \times \left( {7.5} \right)}}} \right.\\} {12 \times \left( {7.5} \right)}}} \right)\\ = - 0.212\;{\rm{cm}}\end{array}\)\(\begin{array}{c}x = 9\;{\rm{cm}}\\x = 1.5\;{\rm{cm}}\\y\left( {x,t} \right) = A\cos \;\left( {\left( {{{2\pi } \mathord{\left/{\vphantom {{2\pi } \lambda }} \right.\\} \lambda }} \right)\left( {x - vt} \right)} \right)\\y = 0.3 \times \cos \;\left( {{{2\pi } \mathord{\left/{\vphantom {{2\pi } {12 \times \left( 9 \right)}}} \right.\\} {12 \times \left( 9 \right)}}} \right)\\ = 0\;{\rm{cm}}\end{array}\)\(\begin{array}{c}x = 10.5\;{\rm{cm}}\\x = 1.5\;{\rm{cm}}\\y\left( {x,t} \right) = A\cos \;\left( {\left( {{{2\pi } \mathord{\left/{\vphantom {{2\pi } \lambda }} \right.\\} \lambda }} \right)\left( {x - vt} \right)} \right)\\y = 0.3 \times \cos \;\left( {{{2\pi } \mathord{\left/{\vphantom {{2\pi } {12 \times \left( {10.5} \right)}}} \right.\\} {12 \times \left( {10.5} \right)}}} \right)\\ = 0.212\;{\rm{cm}}\end{array}\)\(\begin{array}{c}x = 12\;{\rm{cm}}\\x = 1.5\;{\rm{cm}}\\y\left( {x,t} \right) = A\cos \;\left( {\left( {{{2\pi } \mathord{\left/{\vphantom {{2\pi } \lambda }} \right.\\} \lambda }} \right)\left( {x - vt} \right)} \right)\\y = 0.3 \times \cos \;\left( {{{2\pi } \mathord{\left/{\vphantom {{2\pi } {12 \times \left( {12} \right)}}} \right.\\} {12 \times \left( {12} \right)}}} \right)\\ = 0.3\;{\rm{cm}}\end{array}\)
Hence the values are
x (cm) | y (cm) |
0 | 0.3 |
1.5 | 0.212 |
3 | 0 |
4.5 | -0.212 |
6 | -.0.3 |
7.5 | -0.212 |
9 | 0 |
10.5 | 0.212 |
12 | 0.3 |