Chapter 2: Q14E (page 467)
A wave on a string is described by\(y\left( {x,t} \right) = Acos\left( {kx - \omega t} \right)\). (a) Graph \(y,\,{v_y}\,and\,{a_y}\)as functions of \(x\) for time\(t = 0\). (b) Consider the following points on the string:\(\left( i \right) x = 0;\left( {ii} \right) x = {\pi \mathord{\left/
{\vphantom {\pi {4K}}} \right.
\\} {4K}}; \left( {iii} \right) x = {\pi \mathord{\left/
{\vphantom {\pi {2K}}} \right.
\\} {2K}}; \left( {iv} \right) x = 3{\pi \mathord{\left/
{\vphantom {\pi {4K}}} \right.
\\} {4K}}; \left( v \right) x = {\pi \mathord{\left/
{\vphantom {\pi K}} \right.
\\} K};\)\(\left( {vi} \right) x = {{5\pi } \mathord{\left/
{\vphantom {{5\pi } {4k}}} \right.
\nulldelimiterspace} {4k}}; \left( {vii} \right)x = {{3\pi } \mathord{\left/
{\vphantom {{3\pi } {2k}}} \right.
\\} {2k}}; \left( {viii} \right)x = {{7\pi } \mathord{\left/
{\vphantom {{7\pi } {4k}}} \right.
\\} {4k}}\). For a particle at each of these points at\(t = 0\), describe in words whether the particle is moving and in what direction, and whether the particle is speeding up, slowing down, or instantaneously not accelerating.
Short Answer
(a)