The frequency of its fundamental mode of vibration is expressed as,
\({f_1}=\frac{v}{{2L}}\) …(2)
Here \({f_1}\) is the frequency of its fundamental mode of vibration
Substitute \(800\;{\rm{N}}\) for \(F\), \(0.400\;{\rm{m}}\) for \(L\) and \(3.0 \times {10^{ - 3}}\;{\rm{kg}}\) for \(m\) in the equation (1)
\(\begin{array}{c}v = \sqrt {\frac{{\left( {800\;{\rm{N}}} \right) \times \left( {0.400\;{\rm{m}}} \right)}}{{3.0 \times {{10}^{ - 3}}\;{\rm{kg}}}}} \\v = 326.6\;{{\rm{m}} \mathord{\left/ {\vphantom {{\rm{m}} {\rm{s}}}} \right. \\} {\rm{s}}}\end{array}\)
The speed of the wave is, \(v = 326.6\;{{\rm{m}} \mathord{\left/ {\vphantom {{\rm{m}} {\rm{s}}}} \right. \\} {\rm{s}}}\).
Substitute \(326.6\;{{\rm{m}} \mathord{\left/ {\vphantom {{\rm{m}} {\rm{s}}}} \right. \\} {\rm{s}}}\) for \(v\) and \(0.400\;{\rm{m}}\) for \(L\) in the equation (2)\(\begin{array}{c}{f_1} = \frac{{326.6\;{{\rm{m}} \mathord{\left/ {\vphantom {{\rm{m}} {\rm{s}}}} \right. \\} {\rm{s}}}}}{{2 \times 0.400\;{\rm{m}}}}\\{f_1} = 408.2\;{\rm{Hz}}\end{array}\)
Hence the frequency of its fundamental mode of vibration is, \(408.2\;{\rm{Hz}}\).