The following expression is used to calculate linear mass density:
\(\mu = \frac{m}{L}\) …(2)
Substitute \(8.75 \times {10^{ - 3}}\;{\rm{kg}}\) for \(m\) and \(75.0 \times {10^{ - 2}}\;{\rm{m}}\) for \(L\) in the equation (2).
\(\begin{array}{c}\mu = \frac{{8.75 \times {{10}^{ - 3}}\;{\rm{kg}}}}{{75.0 \times {{10}^{ - 2}}\;{\rm{m}}}}\\\mu = 0.0117\;{{{\rm{kg}}} \mathord{\left/ {\vphantom {{{\rm{kg}}} {\rm{m}}}} \right. \\} {\rm{m}}}\end{array}\)
The value of linear mass density is, \(\mu = 0.0117\;{{{\rm{kg}}} \mathord{\left/ {\vphantom {{{\rm{kg}}} {\rm{m}}}} \right. \\} {\rm{m}}}\).
The standing wave wavelength for the second overtone can be expressed as follows:
\(\lambda = \frac{{2L}}{3}\) …(3)
Substitute \(75.0 \times {10^{ - 2}}\;{\rm{m}}\) for \(L\) in the equation (3).
\(\begin{array}{c}\lambda = \frac{{2 \times 75.0 \times {{10}^{ - 2}}\;{\rm{m}}}}{3}\\\lambda = 0.5\;{\rm{m}}\end{array}\)
The wavelength is, \(\lambda = 0.5\;{\rm{m}}\).
The sound wave's frequency can be expressed as follows:
\({f_s} = \frac{{{v_s}}}{{{\lambda _s}}}\) …(4)
Here \({v_s}\) is the speed of sound and \({\lambda _s}\) is the wavelength of sound.
Substitute \(0.765\;{\rm{m}}\) for \({\lambda _s}\) and \(344\;{{\rm{m}} \mathord{\left/{\vphantom {{\rm{m}} {\rm{s}}}}\right\\} {\rm{s}}}\) for \({v_s}\) in the equation (4).
\(\begin{array}{c}{f_s} = \frac{{344\;{{\rm{m}} \mathord{\left/ {\vphantom {{\rm{m}} {\rm{s}}}} \right. \\} {\rm{s}}}}}{{0.765\;{\rm{m}}}}\\{f_s} = 449.67\;{\rm{Hz}}\end{array}\)
The sound wave's frequency is, \({f_s} = 449.67\;{\rm{Hz}}\).
The wave's speed in the string can be expressed as follows:
\(v = {f_s}\lambda \) …(5)
Substitute \(0.5\;{\rm{m}}\) for \(\lambda \) and \(449.67\;{\rm{Hz}}\) for \({f_s}\) in the equation (5).
\(\begin{array}{c}v = \left( {449.67\;{\rm{Hz}}} \right) \times \left( {0.5\;{\rm{m}}} \right)\\v = 224.8\;{{\rm{m}} \mathord{\left/ {\vphantom {{\rm{m}} {\rm{s}}}} \right. \\} {\rm{s}}}\end{array}\)
The wave's speed is, \(v = 224.8\;{{\rm{m}} \mathord{\left/ {\vphantom {{\rm{m}} {\rm{s}}}} \right. \\} {\rm{s}}}\).
Substitute \(224.8\;{{\rm{m}} \mathord{\left/ {\vphantom {{\rm{m}} {\rm{s}}}} \right. \\} {\rm{s}}}\) for \(v\) and \(0.0117\;{{{\rm{kg}}} \mathord{\left/ {\vphantom {{{\rm{kg}}} {\rm{m}}}} \right. \\} {\rm{m}}}\) for \(\mu \) in the equation (1).
\(\begin{array}{c}F = \left( {0.0117\;{{{\rm{kg}}} \mathord{\left/ {\vphantom {{{\rm{kg}}} {\rm{m}}}} \right. \\} {\rm{m}}}} \right) \times {\left( {224.8\;{{\rm{m}} \mathord{\left/ {\vphantom {{\rm{m}} {\rm{s}}}} \right. \\} {\rm{s}}}} \right)^2}\\F = 591.45\;{\rm{N}}\end{array}\)
Hence the tension in the instrument is, \(591.45\;{\rm{N}}\).