The time taken by the sound wave to travel the distance from a submerged scuba diver to the horn and the time taken by the sound wave to travel the distance from the friend to the horn are the same.
The velocity of the sound wave at 20° C in the air is\({v_{air}} = 344\;{\rm{m/s}}\)and in water is\({v_{{\rm{water}}}} = 1482\;{\rm{m/s}}\).
We can calculate the time taken by sound waves in the air as,
\(t = \frac{{{d_1}}}{{{v_{air}}}}\) (1)
We can calculate the time taken by sound waves in the water as,
\(t = \frac{{{d_2}}}{{{v_{air}}}} + \frac{h}{{{v_{water}}}}\) (2)
Here\(h\)is the distance of the scuba diver from the surface.
Equating equations 1 and 2 as,
\(\begin{array}{c}\frac{{{d_2}}}{{{v_{air}}}} + \frac{h}{{{v_{water}}}} = \frac{{{d_1}}}{{{v_{air}}}}\\\frac{h}{{{v_{water}}}} = \frac{{{d_1}}}{{{v_{air}}}} - \frac{{{d_2}}}{{{v_{air}}}}\\h = {v_{water}}\left( {\frac{{{d_1}}}{{{v_{air}}}} - \frac{{{d_2}}}{{{v_{air}}}}} \right)\end{array}\)
Substitute the values in the above expression, and we get,
\(\begin{array}{c}h = 1482\;{\rm{m/s}}\left( {\frac{{22\;{\rm{m}}}}{{344\;{\rm{m/s}}}} - \frac{{1.2\;{\rm{m}}}}{{344\;{\rm{m/s}}}}} \right)\\ = 4.308\left( {22\;{\rm{m}} - 1.2\;{\rm{m}}} \right)\\ = 4.308\left( {20.8\;{\rm{m}}} \right)\\ = {\rm{89}}{\rm{.60}}\;{\rm{m}}\end{array}\)
Now the distance from horn to scuba diver is the sum of the distance oh horn from the surface and the distance of diver from the surafce; we can calculate it as,
\(D = h + {d_2}\)
Substitute the values in the above expression, and we get,
\(\begin{array}{c}D = {\rm{89}}{\rm{.60}}\;{\rm{m}} + {\rm{1}}{\rm{.2}}\;{\rm{m}}\\ = 90.8\;{\rm{m}}\end{array}\)
Thus, the distance (labeled “?”) from the horn to the diver is \(90.8\;{\rm{m}}\) .