The medium is hydrogen. The adiabatic constant for hydrogen is 1.41, and the gas constant is \(8.3145\;{\rm{J/mol}} \cdot {\rm{K}}\).
Substitute the values in equation 1, and we get the velocity of the wave in hydrogen as,
\(\begin{array}{c}{v_{{{\rm{H}}_{\rm{2}}}}} = \sqrt {\frac{{\left( {1.41} \right)\left( {8.3145\;{\rm{J/mol}} \cdot {\rm{K}}} \right)\left( {300\;{\rm{K}}} \right)}}{{2.02 \times {{10}^{ - 3}}\;{\rm{kg/mol}}}}} \\ = \sqrt {\frac{{\left( {1.41} \right)\left( {8.3145} \right)\left( {300} \right)}}{{2.02 \times {{10}^{ - 3}}}} \cdot \left( {\frac{{1\;{\rm{J/mol}} \cdot {\rm{K}}}}{{1\;{\rm{kg/mol}}}} \times 1\;{\rm{K}} \times \frac{{1\;{\rm{kg}} \cdot {{\rm{m}}^2} \cdot {{\rm{s}}^{ - 2}}}}{{1\;{\rm{J}}}}} \right)} \\ = \sqrt {\frac{{\left( {1.41} \right)\left( {8.3145} \right)\left( {300} \right)}}{{2.02 \times {{10}^{ - 3}}}} \cdot \left( {{\rm{1}}\;{{\rm{m}}^2} \cdot {{\rm{s}}^{ - 2}}} \right)} \\{v_{{{\rm{H}}_{\rm{2}}}}} = 1319\;{\rm{m/s}}\end{array}\)
Thus, the speed of longitudinal waves in hydrogen is \(1319\;{\rm{m/s}}\).