The wavelength of these waves can be calculated using the expression,
\(\lambda = \frac{v}{f}\)
Here v is the velocity of the sound wave.
For temperature, \(295\;{\rm{K}}\)we can calculate the wavelength as,
\(\begin{array}{c}{\lambda _1} = \frac{{325\;{\rm{m/s}}}}{{1250\;{\rm{Hz}}}}\\ = 26 \times {10^{ - 2}}\;{\rm{m}}\end{array}\)
From equation 1, we can write the expression for \({\lambda _1}\) and \({T_1}\) as,
\({\lambda _1} = \frac{1}{f} \times \sqrt {\frac{{\gamma R{T_1}}}{M}} \) (2)
From equation 1, we can write the expression for \({\lambda _2}\) and \({T_2}\) as,
\({\lambda _2} = \frac{1}{f} \times \sqrt {\frac{{\gamma R{T_2}}}{M}} \) (3)
We need to find \({T_2}\), for that, let us divide equation 3 by equation 2 as,
\(\begin{array}{c}\frac{{{\lambda _2}}}{{{\lambda _1}}} = \frac{{\frac{1}{f} \times \sqrt {\frac{{\gamma R{T_2}}}{M}} }}{{\frac{1}{f} \times \sqrt {\frac{{\gamma R{T_1}}}{M}} }}\\\frac{{{\lambda _2}}}{{{\lambda _1}}} = \sqrt {\frac{{{T_2}}}{{{T_1}}}} \end{array}\)
Substitute the values in the above expression, and we get,
\(\begin{array}{c}\frac{{28.5 \times {{10}^{ - 2}}\;{\rm{m}}}}{{26 \times {{10}^{ - 2}}\;{\rm{m}}}} = \sqrt {\frac{{{T_2}}}{{295\;{\rm{K}}}}} \\\sqrt {\frac{{{T_2}}}{{295\;{\rm{K}}}}} = 1.096\\\frac{{{T_2}}}{{295\;{\rm{K}}}} = 1.20\\{T_2} = 354.45\;{\rm{K}}\end{array}\)
Thus, the gas temperature should be \(354.45\;{\rm{K}}\) to achieve this wavelength \(28.5 \times {10^{ - 2}}\;{\rm{m}}\).