Chapter 1: Problem 8
Use MATLAB to evaluate cach of the following expressions. a. \((3-5 i)(-4+6 i)\) b. \(\cos ^{-1}(1.2)\)
Chapter 1: Problem 8
Use MATLAB to evaluate cach of the following expressions. a. \((3-5 i)(-4+6 i)\) b. \(\cos ^{-1}(1.2)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe following MATLAB statements plot the function \(y(x)=2 e^{-02 x}\) for the range \(0 \leq x \leq 10\). \(x=0: 0.1: 10 ;\) \(y=2 * \exp (-0.2 \cdot x) ;\) \(p 10 t(x, y):\) Use the MATLAB Edit Window to create a new empty M-file, type these statements into the file, and save the file with the name teat. 1 .m. Then, execute the program by typing the name test 1 in the Command Window. What result do you get?
Determine the size and contents of the following arrays. Note that the later arrays may depend on the definitions of arrays defined earlier in this exercise. a. \(a=1: 2: 5\); b. \(b=\left\\{a^{+} a^{*} a^{*}\right\\}\) c. \(c=b(1: 2: 3,1: 2: 3)\); d. \(d=a+b(2,:)=\) c. \(w=\) [zeros \((1,3)\) ones \((3,1), 3: 5^{*}\) ? f. \(b([1] 3], 2)=b([3,1], 2)=\)
Suppose that \(u=1\) and \(v=3\). Evaluate the following expressions asing MATLAB. a. \(\frac{4 u}{3 v}\) b. \(\frac{2 v^{-2}}{(u+v)^{2}}\) c. \(\frac{v^{3}}{v^{3}-u^{3}}\) d. \(\frac{4}{3} \pi v^{2}\)
Assume that array array 1 is defined as shown, and determine the contents of the following sub-arrays. $$ \operatorname{array} 1=\left[\begin{array}{rrrrr} 1.1 & 0.0 & 2.1 & -3.5 & 6.0 \\ 0.0 & 1.1 & -6.6 & 2.8 & 3.4 \\ 2.1 & 0.1 & 0.3 & -0.4 & 1.3 \\ -1.4 & 5.1 & 0.0 & 1.1 & 0.0 \end{array}\right] $$ a. array \(1(3,4)\) b. array \(1(:, 3)\) c. arxay \(1\left(1: 2: 3,\left[\begin{array}{lll}3 & 3 & 4\end{array}\right]\right)\) d. array \(1(\\{1 \quad 1], 4)\)
Use the MATLAB Help Browser to find out how to create a new directory from within MATLAB. Then, create a new directory called mymewdir under the current directory, Add the new directory to the top of MATLAB's path.
What do you think about this solution?
We value your feedback to improve our textbook solutions.