Solve the following system of simultaneous equations for \(x\). \(-2.0 x_{1}+5.0 x_{2}+1.0 x_{3}+3.0 x_{4}+4.0 x_{5}-1.0 x_{6}=0.0\) \(2.0 x_{1}-1.0 x_{2}-5.0 x_{3}-2.0 x_{4}+6.0 x_{5}+4.0 x_{6}=1.0\) \(-1.0 x_{1}+6.0 x_{2}-4.0 x_{3}-5.0 x_{4}+3.0 x_{5}-1.0 x_{6}=-6.0\) \(4.0 x_{1}+3.0 x_{2}-6.0 x_{3}-5.0 x_{4}-2.0 x_{5}-2.0 x_{6}=10.0\) \(-3.0 x_{1}+6.0 x_{2}+4.0 x_{3}+2.0 x_{4}-6.0 x_{5}+4.0 x_{6}=-6.0\) \(2.0 x_{1}+4.0 x_{2}+4.0 x_{3}+4.0 x_{4}+5.0 x_{5}-4.0 x_{6}=-2.0\)

Short Answer

Expert verified
The given system of simultaneous linear equations does not have a unique solution, as the matrix cannot be reduced to reduced row-echelon form through Gaussian elimination.

Step by step solution

01

Write the Augmented Matrix

Write the given system of equations as an augmented matrix: \[ \begin{bmatrix} -2 & 5 & 1 & 3 & 4 & -1 & 0 \\ 2 & -1 & -5 & -2 & 6 & 4 & 1 \\ -1 & 6 & -4 & -5 & 3 & -1 & -6 \\ 4 & 3 & -6 & -5 & -2 & -2 & 10 \\ -3 & 6 & 4 & 2 & -6 & 4 & -6 \\ 2 & 4 & 4 & 4 & 5 & -4 & -2 \\ \end{bmatrix} \]
02

Perform Row Operations to Find Reduced Row-Echelon Form

Perform row operations to transform the matrix into reduced row-echelon form. We'll begin by making the element in the top-left corner equal to 1: Swap Row 1 and Row 4: \[ \begin{bmatrix} 4 & 3 & -6 & -5 & -2 & -2 & 10 \\ 2 & -1 & -5 & -2 & 6 & 4 & 1 \\ -1 & 6 & -4 & -5 & 3 & -1 & -6 \\ -2 & 5 & 1 & 3 & 4 & -1 & 0 \\ -3 & 6 & 4 & 2 & -6 & 4 & -6 \\ 2 & 4 & 4 & 4 & 5 & -4 & -2 \\ \end{bmatrix} \] Divide Row 1 by 4: \[ \begin{bmatrix} 1 & \frac{3}{4} & -\frac{3}{2} & -\frac{5}{4} & -\frac{1}{2} & -\frac{1}{2} & \frac{5}{2} \\ 2 & -1 & -5 & -2 & 6 & 4 & 1 \\ -1 & 6 & -4 & -5 & 3 & -1 & -6 \\ -2 & 5 & 1 & 3 & 4 & -1 & 0 \\ -3 & 6 & 4 & 2 & -6 & 4 & -6 \\ 2 & 4 & 4 & 4 & 5 & -4 & -2 \\ \end{bmatrix} \] Now, use the 1 in the top-left corner to eliminate the numbers below it: Add 2 times Row 1 to Row 2: \[ \begin{bmatrix} 1 & \frac{3}{4} & -\frac{3}{2} & -\frac{5}{4} & -\frac{1}{2} & -\frac{1}{2} & \frac{5}{2} \\ 0 & 0 & -4 & 0 & 5 & 3 & -4 \\ -1 & 6 & -4 & -5 & 3 & -1 & -6 \\ -2 & 5 & 1 & 3 & 4 & -1 & 0 \\ -3 & 6 & 4 & 2 & -6 & 4 & -6 \\ 2 & 4 & 4 & 4 & 5 & -4 & -2 \\ \end{bmatrix} \] Add 1 times Row 1 to Row 3: \[ \begin{bmatrix} 1 & \frac{3}{4} & -\frac{3}{2} & -\frac{5}{4} & -\frac{1}{2} & -\frac{1}{2} & \frac{5}{2} \\ 0 & 0 & -4 & 0 & 5 & 3 & -4 \\ 0 & \frac{27}{4} & -\frac{7}{2} & -\frac{9}{4} & 1 & -\frac{1}{2} & -\frac{7}{2} \\ -2 & 5 & 1 & 3 & 4 & -1 & 0 \\ -3 & 6 & 4 & 2 & -6 & 4 & -6 \\ 2 & 4 & 4 & 4 & 5 & -4 & -2 \\ \end{bmatrix} \] Add 2 times Row 1 to Row 4: \[ \begin{bmatrix} 1 & \frac{3}{4} & -\frac{3}{2} & -\frac{5}{4} & -\frac{1}{2} & -\frac{1}{2} & \frac{5}{2} \\ 0 & 0 & -4 & 0 & 5 & 3 & -4 \\ 0 & \frac{27}{4} & -\frac{7}{2} & -\frac{9}{4} & 1 & -\frac{1}{2} & -\frac{7}{2} \\ 0 & 6 & 0 & 4 & 3 & 0 & 5 \\ -3 & 6 & 4 & 2 & -6 & 4 & -6 \\ 2 & 4 & 4 & 4 & 5 & -4 & -2 \\ \end{bmatrix} \] Add 3 times Row 1 to Row 5: \[ \begin{bmatrix} 1 & \frac{3}{4} & -\frac{3}{2} & -\frac{5}{4} & -\frac{1}{2} & -\frac{1}{2} & \frac{5}{2} \\ 0 & 0 & -4 & 0 & 5 & 3 & -4 \\ 0 & \frac{27}{4} & -\frac{7}{2} & -\frac{9}{4} & 1 & -\frac{1}{2} & -\frac{7}{2} \\ 0 & 6 & 0 & 4 & 3 & 0 & 5 \\ 0 & \frac{15}{4} & -\frac{5}{2} & \frac{7}{4} & -\frac{9}{2} & \frac{5}{2} & -\frac{17}{2} \\ 2 & 4 & 4 & 4 & 5 & -4 & -2 \\ \end{bmatrix} \] Subtract 2 times Row 1 from Row 6: \[ \begin{bmatrix} 1 & \frac{3}{4} & -\frac{3}{2} & -\frac{5}{4} & -\frac{1}{2} & -\frac{1}{2} & \frac{5}{2} \\ 0 & 0 & -4 & 0 & 5 & 3 & -4 \\ 0 & \frac{27}{4} & -\frac{7}{2} & -\frac{9}{4} & 1 & -\frac{1}{2} & -\frac{7}{2} \\ 0 & 6 & 0 & 4 & 3 & 0 & 5 \\ 0 & \frac{15}{4} & -\frac{5}{2} & \frac{7}{4} & -\frac{9}{2} & \frac{5}{2} & -\frac{17}{2} \\ 0 & \frac{13}{4} & 5 & \frac{11}{4} & \frac{9}{2} & -\frac{11}{2} & -\frac{5}{2} \\ \end{bmatrix} \] Next, we will attempt to make the element in the second row and second column equal to 1: We can't divide the second row by any scalar to achieve this. However, we can multiply the second row by 2 and then add it to the third row. Add 2 times Row 2 to Row 3: \[ \begin{bmatrix} 1 & \frac{3}{4} & -\frac{3}{2} & -\frac{5}{4} & -\frac{1}{2} & -\frac{1}{2} & \frac{5}{2} \\ 0 & 0 & -4 & 0 & 5 & 3 & -4 \\ 0 & \frac{27}{4} & -8 & -\frac{9}{4} & 11 & \frac{5}{2} & -\frac{15}{2} \\ 0 & 6 & 0 & 4 & 3 & 0 & 5 \\ 0 & \frac{15}{4} & -\frac{5}{2} & \frac{7}{4} & -\frac{9}{2} & \frac{5}{2} & -\frac{17}{2} \\ 0 & \frac{13}{4} & 5 & \frac{11}{4} & \frac{9}{2} & -\frac{11}{2} & -\frac{5}{2} \\ \end{bmatrix} \] This is where we encounter a problem. The third row has non-zero elements in the third and higher columns, but its second column has a 0. This means the system of equations does not have a unique solution. We can't use Gaussian elimination to find the solution to this system of equations.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Psychology Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free